Antonino Mazzaglia
Consiglio Nazionale delle Ricerche-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) c/o Dept ChiBioFarAm, University of Messina, Messina, Italy
Cyclodextrins (CDs) are suitable host molecules especially used for drug entrapment and delivery. This communication reviews our results on the design and characterization of special classes of cyclodextrins (CDs) which self-assembly in solution, forming nanoassemblies, or are grafted to carbon nanomaterials, metal nanoparticles, and metal or fabric supports leading to drug-eluiting implants. In particular, our interest was focused on biodegradable amphiphilic cyclodextrins (aCDs), able to host, deliver and especially target a drug in the sites of action. These nanocarriers, have a size compatible with i.v. injection and possess high potential to optimize drug distribution in the body, and selectively deliver anticancer,1 photosensitiser for Photodynamic Therapy (PDT) and Antimicrobial PDT (aPDT),2-3 DNA for gene therapy4 or combined dose of phototherapeutics5 and/or conventional anticancer drugs.6 Recently, aCDs were also utilized to cover/stabilize metal nanoparticles, leading to stimuli-responsive multifunctional nanoconstructs activable from light, redox reactions or magnetic field for theranostic applications.7 Futhermore, nanomagnets of aCD were proposed for detection in solution of Alzheimer Disease biomarker (i.e. Amyloid-β). Dispositives fabricated by immobilizing aCD nanoparticles on polycrystalline gold were proposed for electrical release of neurotransmitters.8 Finally, a proper grafting of CDs on graphene or carbon nanotubes, were designed to give nanoplatform for antiviral delivery9 or dual plasmids-antiviral delivery. Accordingly, recent investigations and harmonized results on design, supramolecular assembly, delivery and cellular response will be here discussed.
Keywords: Cyclodextrins, nanomaterials, dispositives, nanocarriers.
REFERENCES
[1] Bondì, M. L.; Scala, A.; Sortino, S.; Amore, A.; Botto, C.; Azzolina, A.; Balasus, D.; Cervello, M., Mazzaglia A. Biomacromolecules, 2015, 16, 3784.
[2] Conte, C.; Ungaro, F.; Mazzaglia, A.; Quaglia, F. In Nano-Oncologicals: New Targeting and Delivery Approaches. Advances in Delivery Science and Technology; Alonso, M. J., Garcia-Fuentes, M., Eds; CRS Springer: New York, 2014; pp 123−160 and ref. therein.
[3] Mazzaglia, A.; Valerio, A.; Micali, N.; Villari, V.; Quaglia, F.; Castriciano, M. A.; Monsù Scolaro, L.; Giuffré, M.; Siracusano, G.; Sciortino, M. T. Chem. Commun. 2011, 47, 9140.
[4] Villari, V.; Mazzaglia, A.; Darcy, R.; O’Driscoll, C. M.; Micali, N. Biomacromolecules, 2013, 14, 811.
[5] Kandoth, N.; Vittorino, E.; Sciortino, M. T.; Parisi, T.; Colao, I.; Mazzaglia, A.; Sortino, S. Chem.−Eur. J. 2012, 6, 1684.
[6] Conte, C.; Scala A., Siracusano, G.; Sortino G.; Pennisi R.; PipernoA.; Miro, A.; Ungaro F.; Sciortino M. T.; Quaglia F.; Mazzaglia A.; Colloids and Surfaces B: Biointerfaces, 2016, 146, 590.
[7] M. Trapani, A. Romeo, T. Parisi, M. T. Sciortino, S. Patanè, V. Villari and A. Mazzaglia, RSC Adv., 2013, 3, 5607.
[8] Foschi, G.; Leonardi,F.; Scala, A.; Biscarini, F.; Kovtun, A.; Liscio, A.; Mazzaglia A.; Casalini S. Nanoscale, 2015, 7, 20025.
[9] Iannazzo, D.; Mazzaglia, A.; Scala, A.; Pistone, A.; Galvagno, S.; Lanza, M.; Riccucci, C.; Ingo, G.M.; Colao, I.; M. T. Sciortino, M. T., Piperno A.; Grassi, G. Colloids Surf., B, 2014, 123, 264.